

東北大学技術紹介

難焼結性遷移金属ホウ化物

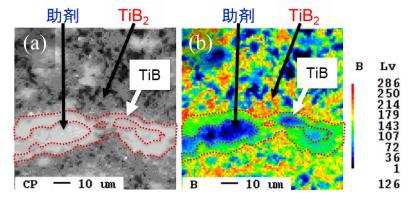
低温焼結による高密度化で適用範囲を拡大!

概要

高効率なエネルギー源の需要の高まり、および航空宇宙分野の技術の発達に伴い、これらの分野で使用される材料には、過酷な環境下でも使用できることが要求される。航空宇宙分野で期待される材料の中でも、TiB2は高い融点および強度を有し、且つ高い導電性を有すること等の理由から、耐熱材料および耐摩耗材料として利用されている。しかしながら、TiB2は焼結に高温および高圧を必要とする難焼結性材料であり、利用範囲が限定されている。

本件の焼結技術は、助剤を添加しながらも、遷移金属ホウ化物本来の物性に近い効果を発揮している。難焼結性のためパウダーや薄膜での利用に限られている遷移金属二ホウ化物の、構造部材としての利用可能性を拡大させる結果である。

応用例


- □ 切削工具
- □ 航空機部品
- □ 中性子遮蔽材

知的財産データ

知財関連番号 : 特願2022-503174

発明者: 笠田竜太、近藤創介、YUHAO、陣場優貴

整理番号 : T19-801

助剤を添加したTiB₂1300℃焼結体のBの分布.

硬度

助剤添加	焼結温度 (℃)	密度 (g/cm³)	硬度 (HV)
有	1600	4.56	2373
無	1600	4.43	1923

助剤の添加により母材硬度(24.2 GPa)**と同等の硬度を実現 ※参考文献: R. G. Munro, Material Properties of Titanium Diboride, J. Res. Natl. Inst. Stand. Technol. 105, 709-720 (2000)

関連文献

[1] Yuki Jimba, Sosuke Kondo, Hao Yu, Haoran Wang, Yasuki Okuno, Ryuta Kasada, Effect of mechanically alloyed sintering aid on sinterability of TiB2

お問い合わせ

株式会社東北テクノアーチ

TEL 022-222-3049

お問い合わせフォームはこちら

本資料をダウンロード

お問合せ

https://www.t-technoarch.co.jp/contact.html

発明案件を随時更新中 https://www.t-technoarch.co.ip/anken.php

Linkedin ページをフォロー

https://www.linkedin.com/company/tohoku-techno-arch

Leading you to Successful Industrialization

