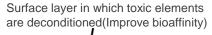
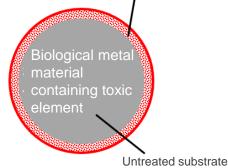


Open type Nanoporous body, surface treatment, composite

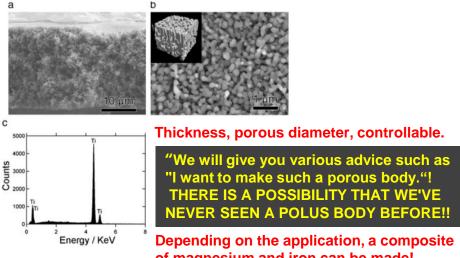
There are many examples such as stainless steel (austenitic and ferritic), nitinol, Si, C, Fe, W, Ti, Cr, Zr, Nb, Mo, Ta, Fe-Cr-Co-Ni-V high entropy alloy, Ni-Mo alloy, Fe-Al alloy, etc.! Depending on the application, magnesium and iron composites can also be made!


Overview


Conventionally, for porous metals (Nano-microporous metals) having micropores of nano or micrometer size, a dealloying (deconditioning) method has been used to obtain porous bodies by corrosion-removing only noble metals from alloys of noble and noble metals in aqueous solution. However, there is a problem that the target metals are limited in that it is possible to fabricate nano-microporous metals only in noble metals and their alloys with respect to the standard hydrogen electrode potential.

The present invention can easily fabricate nano-microporous bodies in vulgar metals and their alloys that could not be fabricated in principle by conventional methods. As one specific example, the nano-porous bodies were successfully fabricated in pure metals such as titanium, niobium, and molybdenum, alloys such as beta titanium and stainless steel (austenitic and ferritic), and carbon.

Product Application


 Catalyst Electrode Filter 	 Medical material Sensing material Composite material
IP No.	: US 9,279,186, JP5678353, DE112010005201.84, JP2022-140750
	: KATO Hidemi, WADA Takeshi, other. : T10-043, T22-030

Features · Outstandings

Example of nanoporous titanium

Related Works

of magnesium and iron can be made!

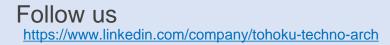
[1] Materials Letters Volume 65, Issue 7, 15 April 2011, Pages 1076-1078 [2] Materia Japan Vol. 52 No. 8 (2013) "Development of Open-Cell Porous Materials with Base and Semimetals and Their Alloys"

Contact

С

Download OnePager

https://www.t-technoarch.co.jp/en/contact.html



Check Out Our Inventions https://www.t-technoarch.co.jp/en/anken.php

Leading you to Successful Industrialization

TOHOKU TECHNO ARCH 株式会社 東北テゥノアーチ